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LETTER TO THE EDITOR 

A constrained path auxiliary-field quantum Monte Carlo 
method for the homogeneous electron gas 

M T Wilson and B L GyOrf€y 
H H Wills Physics labor;uory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, UK 

Received IO April 1995 

Abstraet. Using a method suggested by Zhang. &Ism and Gubematis, we have formulated 
an auxiliary-field method for the electron gas (iellium) in the form of a random walk ulrough 
the space of Slater determinants. A calculation on a model jellium shows that this formdation 
removes some of the large statistical errors thal have afflicted previous calculations. 

The stochastic quantum Monte Carlo (QMC) methods allow, in principle, the calculation 
of exact ground-state properties of systems of interacting electrons. These calculations are 
attractive because the numerical cost scales with size significantly better than for ‘exact’ 
approaches such as the configuration interaction or exact diagonalization methods. There 
are many forms of QMC which have proved successful for many problems in physics and 
chemistry. However, since all QMC methods are stochastic approaches, they are affiicted 
with statistical uncertainty. In the case of fermions, one also has to cope with the famous 
‘fermion sign problem’, which renders an accurate calculation impossible in the limit of 
large inverse temperature 6. 

Although the most successful QMC techniques for realistic electron systems are the 
diffusion (DMC) and Green’s function (GFMC) methods [l], recently there has been 
some interest in the ‘auxiliary-field quantum Monte Carlo’ (AFQMC) method [Z, 3, 41. 
This method has been much used to study the Hubbard model where it has proved very 
successful [5, 61. In its simplest form, the density matrix e& is decomposed into a sum 
of onebody operators over all possible auxiliary fields. These fields must be summed 
over with an importance sampling method. The formulation exhibits many features that 
make it attractive compared to the DMC and GFMC methods. In particular the method 
is, in principle, generalizable to dealing with relativistic problems described by the Dirac 
Hamiltonian [4]. Moreover, it allows the straightforward computation of ground-state 
expectation values of operators which do not commute with A. However, the auxiliary-field 
method suffers from much larger statistical error than the DMC or GFMC methods, and 
this has, up to now, severely limited its use. 

Recently, Zhang, Carlson and Gubernatis [7] have proposed a new importance sampling 
technique for the AFQMC method and illustrated its use via calculations based on the 
Hubbard model. By introducing some ideas from the GFMC method, they have been 
able to reduce significantly the statistical error associated with the random fluctuations in 
the auxiliary fields and the fermion sign problem. In this letter we demonstrate that their 
constrained path auxiliary-field QMC method (CPAFQMC) works well for the case of the 
long-range Coulomb interaction in the jellium model, by showing that the fluctuations are 
much reduced compared to those in the AFQMC calculations of Sivestrelli er a1 131. 
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For clarity, we briefly recall the AFQMC method. We start with the real-space 
Hamiltonian 

where K j  = (B(r - r j ) l -A2V~/2m16(r - r j ) )  and K j  =e2/4nglrj-r,l. We furtherdefine 
Ai as the number operator Ai = cjci. We can then use the density matrix (or imaginary time 
propagator) e-8' to project out the ground state from a trial wavefunction l+r): 

where, in principle, I+r) and I#r) are any wavefunctions not orthogonal to the ground state. 
We now use the well-known Hubbard-Stratonovich transformation [8] to write e-AT as a 
functional integral over one-body operators: 

exp(-Ar 6) = J d u ( r )  G[u]exp(-~[u(r)]As) +O(Ar2) (3 )  

where G[u] is a gaussian measure, G[o] a exp(fAr cij Vijuiuj) and AT is a small time 
slice. i [u ( r ) ]  is the one-body Hamiltonian 'f + '& K,uj&. We see that since K j  is 
a positive definite operator ui must be chosen to be purely imaginary for the functional 
integral to converge. Writing e-@ = (e-ArB)N, we then are left with an auxiliary-field 
representation for e-8' which involves a local, time-varying field U ( T ,  t ) .  Putting together 
equations (2) and (3) we obtain an expression suitable for a Monte Carlo calculation: 

Jdu( r ,  0 (n:, G[o(r .  01) (&l6n,"=, exp (--fi[d~, r)lAr) I+r) 
EO = lim . (4) 

We now comment on the significance of l q ~ )  and I+T). They can in principle be 
selected as any wavefunction not orthogonal to the true ground state of 6, Iq0.0). However, 
it is clear that the method works best if I@r) is chosen to be the best single Slater 
determinant (i.e. the Hartree-Fock wavefunction.) This is simply because under the action 
of exp(-i[u(r, t ) ]  Ar) any Slater determinant evolves into another Slater determinant. The 
significance of Iq5r) is in controlling the sign problem, as explained below. Zhang et a! [7] 
suggest choosing Ih) as the best available simple approximation to I+o). 

The basic approach of Silvestrelli er al is to sample the probability distribution 
p[u] = (n,"=, G[u(r,  01) (&I n,"=, exp(-i[u(r, ? ) ] A r ) b ) ,  using a simple Monte Carlo 
method in two stages. Firstly one can generate u-fields from the gaussian distribution G 
efficiently with the Box-Muller method [9]. Secondly, once the u-fields have been chosen 
one can calculate the overlap D[u(T, t ) ]  = (Qrl nEl exp(-i[u(r, t ) JAr) l+~) .  Applying 
a Metropolis test [lo] to successive D[cr(r, t)] enables one to recover the full probability 
distribution p[u]. One then evaluates the energy with the expression 

p+m Jdo(7, t )  (n,"=, G[U(T, 01) (4rl n,",, exp (-fib(,, OlAs) I$r) 

1 M (hlg n,"=, exp (-i[%(~, OlAr) I@T) 

8-m M-m M m=i (@rIn,=, exp (-fi[%(r, OlAr) I+T) 
E O =  Iim lim -E N (5) 

where the um(r, t )  are taken from the distribution p[u,J .  Unfortunately, this method for 
sampling PIU] is rather inefficient, as is evident from the very small Metropolis acceptance 
rate in the limit of large ,5. This inefficiency occurs because one looks only at the value of 



Letter to the Editor L373 

the overlap D[u(r, t)] afer a propagation up to imaginary time 0, whereas in reality it is 
often clear whether a configuration is likely to be accepted at much earlier times. 

To benefit from this observation we follow the idea of B a n g  et a l . [7]  and instead 
of considering the problem as one of summing over random auxiliary fields we approach 
it in a manner similar to that of the GFMC method: namely by studying a selection of 
'walkers', undergoing a random walk through the space of Slater determinants, whose 
motion is governed by the random auxiliary fields u(r, t). 

We consider an ensemble of M 'walkers' {I@$'))), each starting initially at the point I@T) 
in the space of Slater determinants. This ensemble represents a many-body wavefunction, 
defined by I@(')) = $ EmEl I@,$)). We then consider applying the operator on I@(')) 
one time step at a time, that is, applying each e-*'H individually. This is achieved by 
propagating each walker for a time AT via a different auxiliary field um(r), thus making all 
the I@:)) different. This application generates a new ensemble of walkers, {I@:))]. In fact, 
if we denote the ensemble at a time slice n by (I@$))], and the many-body wavefunction it 
represents by I@(")) = $ E,"==, I@$)), we have an iterative relation for the wavefunction: 

(6)  

In this way -+ /@ob), the ground-state wavefunction, as n -+ W .  For the individual 
walkers I@$)) in the ensemble we define the relationship I@$+')) = exp(-&[U(?-; n + 
l)] Ar)l@$)). We could generate I@(")) simply by propagating the ensemble of I@$)) up 
to the imaginary time 0 in which we are interested, picking an auxiliary field from the 
distribution G [ o ( r ) ]  at every time step k ;  however, this method is inefficient. Instead, 
we weight each walker with its overlap with Ih), that is with W(l@$t'))) = 
(@F[@$+l)). In order that one may consider the weight properly at each time step we must 
define the 'transition probability' for the step n -+ n + 1 as 

M 

= / du(r ;  n + 1) G[u(r ;  n + 1)Jexp (-&[u(r; n + l ) ]  AT) I@(")). 
.7 

so that ~(14:~))) = n,"=, q(')(@TI@,$)). We see that since I@$')) = I@r) Vm, w(I@~"')) 
is just equal to D [ o ( r ,  t ) ]  defined above. Thus, if we generate the fields from the same 
gaussian G[u]  and weight the walkers with weight W(/@iN))), we are in effect sampling 
the same distribution p[u] .  This sampling can be carried out using a replicatioddeletion 
step instead of a Metropolis step. After every time step k we adjust the weight of a walker 
with q"). This is most efficiently done by deleting the walker with probability 1 - qck) if 
q(') c 1, or replicating it with probability q@) - I if q*) > 1. In practice, we find that 
q(') is always significantly less than 1, and so we adjust this criterion to keep the number 
of particles more or less constant. 

For fermions we observe that the overlap W(l@:))) at some time slice k can become 
negative. This manifests itself by a negative q(k).  It is clear that if A? is sufficiently small 
then q") -+ 0 as 1 + k. Hence the walker should be deleted if at any point W ( I @ ) )  turns 
negative. Whilst this deletion avoids the fermion sign problem, it is important to realize 
that it is, in general, an approximation. The quality of the approximation depends on the 
form of 1 @ ~ ) .  Zhang et al suggest that if I@T) is chosen to be identical to I@'), the true 
ground-state wavefunction, then this approximation is exact. Thus if I&) is chosen close 
to I@') then it is reasonable for one to assume that the approximation will be good. 

We have implemented this approach with calculations on a paramagnetic jellium system 
containing 14 electrons in a repeated box, at density r, = 4 Bohr radii. We have performed 



L374 Lener to the Editor 

calculations for the ground-state energy using the methods of both Zhang et a1 (CPAFQMC) 
and Silvestrelli et af (AFQMC). In each case we have chosen the trial wavefunction IQ=) to 
be the Hartree-Fock solution (i.e. a Slater determinant of plane waves.) For simplicity we 
have also chosen Ih) to be equal to the Hartree-Fock solution. (In the AFQMC calculations 
we followed the prescriptions of SivestTelli etal as described in [3]. In particular we used a 
symmetric form of equations (2) and (4) with an evolution operator of time ,6/2 to both the 
left and the right of H.) For each method we have plotted the correlation energy per particle 
against imaginary time @. In figure 1 we show the results for the method of Silvestrelli 
@t af, and the results for the CPAFQMC method of Zhang et a1 are shown in figure 2. For 
comparison we also show the result of a GFUC calculation for the same system [3]. 

AFQMC 14, 

-10 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
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Figure 1. Correlation energy per electron against ,9 for method of Silvestdi er al, using 14 
electrons at a density companding to r, = 4 Bohr radii. Ar = 0.2 au. Energy is measured in 
atotomic units (au), with I au = 2 rydbergs. "he point ,9 = 4 au corresponds to a tMal of 4500 
a-fields. 
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Figum 2 Correlation energy per elecmn against ,9 for method of Zhang er ai, using 14 electrons 
at a density colresponding to r, = 4 Bohr radii. Ar = 0.2 au. A!J points correspond to a total 
Of dm waJken. 
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determinants with some of the efficient sampling algorithms for AFQMC calculations [3]. 
Also, since this method is not dependent on the physical system we study, given sufficient 
computer memory it will have application to a wide range of many-fermion problems. 

To summarize, we have used the method of Zhang el al which combines many of the 
positive features of the GFMC and AFQMC algorithms to calculate the ground-state energy 
of a jellium system and have shown it to be superior to the previously used AFQMC method 
for long-range interactions. 

We would like to thank Dr Matthew Foulkes for bringing the preprint of Zhang ef af to our 
attention. M T Wilson would like to thank the Engineering and Physical Sciences Research 
Council and Daresbury Laboratory for a CASE research studentship. 
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